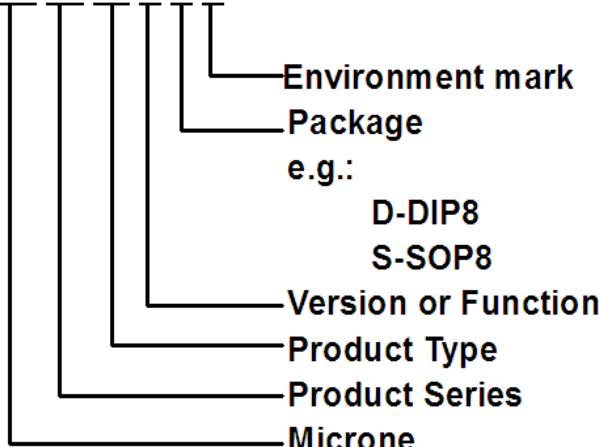


Transition-Mode PFC Controller ME8401

General Description

The ME8401 is a current-mode PFC controller operating in Transition Mode (TM). Pin-to-pin compatible with the predecessor ME8401, it offers improved performance.

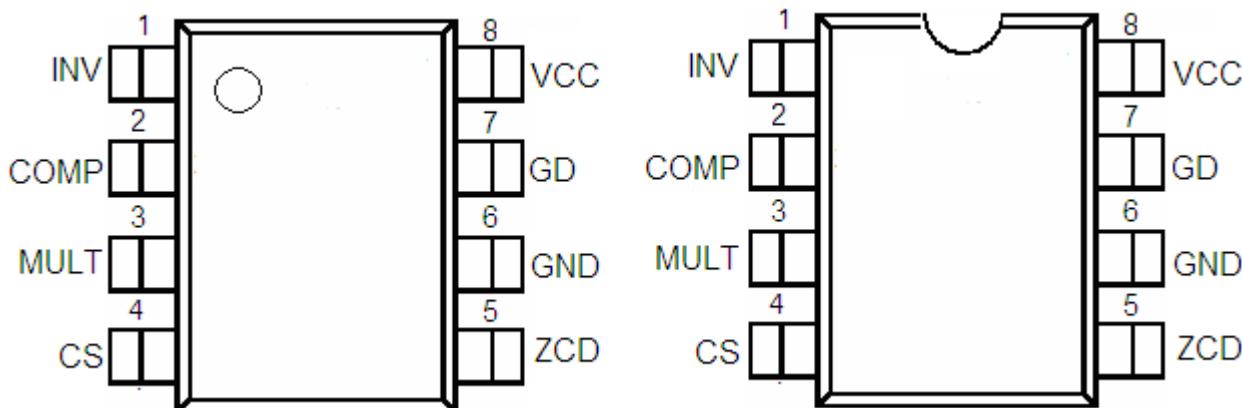

The highly linear multiplier includes a special circuit, able to reduce AC input current distortion, that allows wide-range-mains operation with an extremely low THD, even over a large load range. The output voltage is controlled by means of a voltage-mode error amplifier and a precise (1% @ $T_j = 25^\circ\text{C}$) internal voltage reference. The device features extremely low consumption ($\leq 120 \mu\text{A}$ before start-up and $< 2\text{mA}$ running) and includes a disable function suitable for IC remote ON/OFF, which makes it easier to comply with energy saving norms (Blue Angel, EnergyStar, Energy2000, etc.). An effective two-step OVP enables to safely handle overvoltage either occurring at start-up or resulting from load disconnection. The totem-pole output stage, capable of 600mA source and 800mA sink current, is suitable for big MOS-FET or IGBT drive which, combined with the other features, makes the device an excellent low-cost solution for EN61000-3-2 compliant SMPS's up to 300W.

Features

- Transition-Mode control of PFC pre-regulators
- Proprietary multiplier design for minimum THD of AC input current
- Very precise adjustable output overvoltage protection
- Ultra-low($\leq 120\mu\text{A}$) start-up current
- Extended IC supply voltage range
- On-chip filter on current sense
- Disable function
- 1%(@ $T_j = 25^\circ\text{C}$) internal reference voltage
- -600/+800mA totempole gate driver with UVLO pull-down and voltage clamp
- DIP-8/SOP-8 packages

Selection Guide

ME 84 01 X X X



Applications

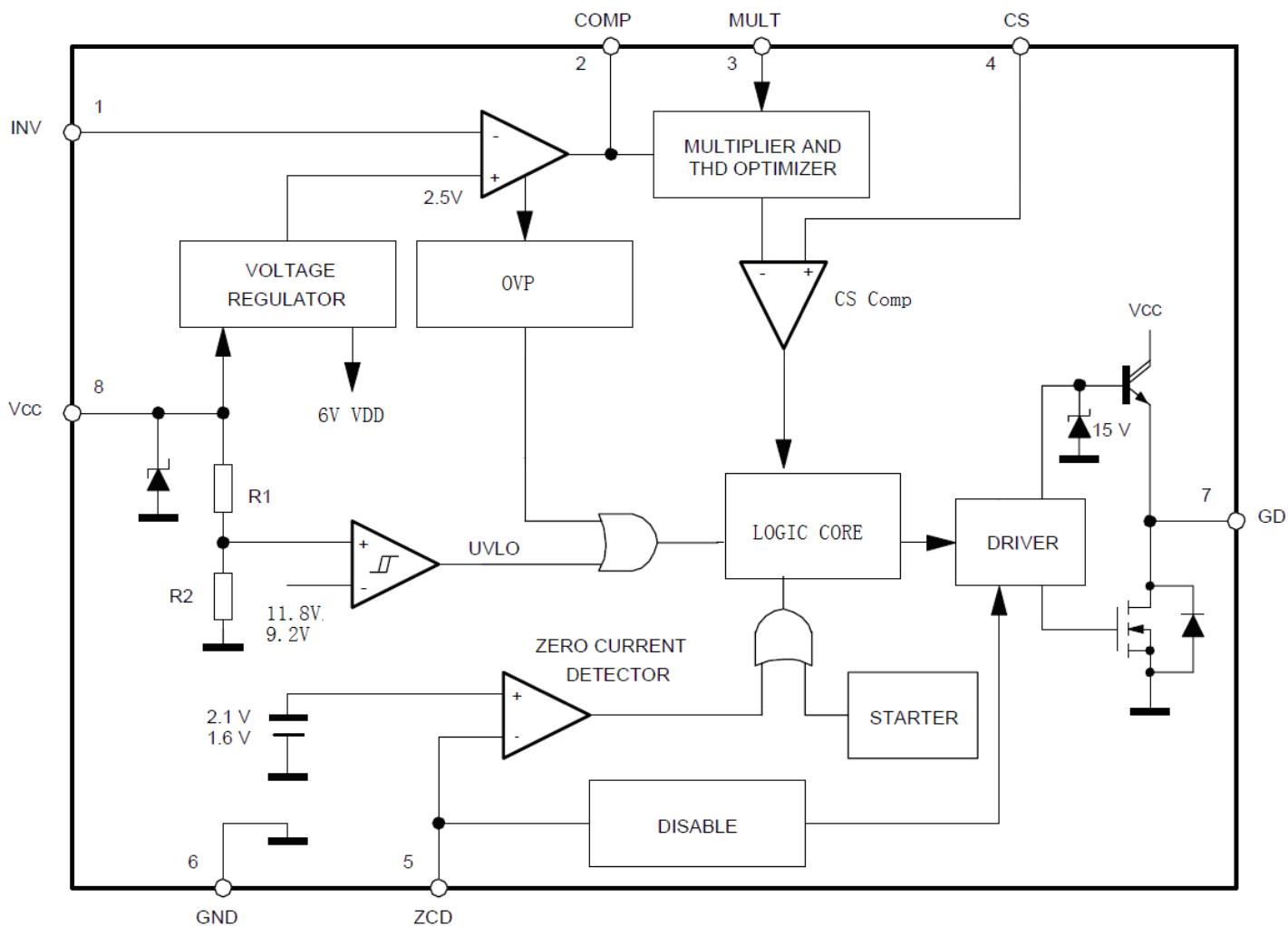
PFC pre-regulators for:

- IEC61000-3-2 compliant SMPS(TV, Desktop PC, Monitor) up to 300W
- Hi-end AC-DC adapter/charger
- Entry level server & web server

Pin Configuration (Top view)

Pin Assignment

Pin Num.	Symbol	Function
1	INV	Inverting input of the error amplifier. The information on the output voltage of the PFC pre-regulator is fed into the pin through a resistor divider.
2	COMP	Output of the error amplifier. A compensation network is placed between this pin and INV pin to achieve stability of the voltage control loop and ensure high power factor and low THD.
3	MULT	Main input to the multiplier. This pin is connected to the rectified mains voltage via a resistor divider and provides the sinusoidal reference to the current loop.
4	CS	Input to the PWM comparator. The current flowing in the MOSFET is sensed through a resistor, the resulting voltage is applied to this pin and compared with an internal sinusoidal-shaped reference, generated by the multiplier, to determine MOSFET's turn-off.
5	ZCD	Boost inductor's demagnetization sensing input for transition-mode operation. A negative-going edge triggers MOSFET's turn-on.
6	GND	Ground.
7	GD	Gate driver output. The totem pole output stage is able to drive power MOSFET's and IGBT's with a peak current of 600 mA source and 800 mA sink. The high-level voltage of this pin is clamped at about 12V to avoid excessive gate voltages in case the pin is supplied with a high VCC.
8	VCC	Supply Voltage.


Absolute Maximum Ratings

Parameter	Value	Unit
Voltage at VDD pin to GND:VDD	-0.3~30	V
Voltage at CS,INV,MULT,COMP PIN to GND	-0.3~8	V
Output Totem Pole Peak Current: IGD	± 0.8	A
Zero Current Detector Max. Current	-50 (source) 10(sink)	mA
Min/Max operating Junction Temperature T_J	-40~150	°C
Lead Temperature (Soldering, 10secs)	260	°C
Min/Max Soldering temperature T_{skj}	-55~150	°C

Caution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage.

These values must therefore not be exceeded under any conditions.

Block Diagram

Electrical Characteristics

($T_A = 25^\circ\text{C}$, $V_{CC} = 12\text{V}$, $C_O = 1\text{nF}$, unless otherwise noted.)

Item	Symbol	Test condition	Min	Typ.	Max	Unit
Supply Voltage(VDD) section						
V _{CC}	Operating range	After turn-on	10.5		21	V
V _{CCon}	Turn-on threshold	(1)	10.5	11.8	13	V
V _{CCOff}	Turn-off threshold	(1)	8.4	9.2	10	V
Hys	Hysteresis		2.2		2.8	V
V _Z	Zener Voltage	I _{CC} = 20 mA	21	23	26	V
Current sense input section						
I _{start-up}	Start-up Current	Before turn-on, V _{CC} = 11V		110	120	µA
I _q	Quiescent Current	After turn-on		1.5	2.0	mA
I _{CC}	Operating Supply Current	V _{CC} = 15V		1.8	2.5	mA
Multiplier input section						
I _{MULT}	Input Bias Current	V _{VFF} = 0 to 4 V			-1	µA
V _{MULT}	Linear Operation Range		0 to 3			V
$\frac{\Delta V_{CS}}{\Delta V_{MULT}}$	Output Max. Slope	V _{MULT} = 0 to 0.5V V _{COMP} = Upper clamp	1.65	1.9		V/V
K	Gain ⁽²⁾	V _{MULT} = 1 V, V _{COMP} = 4 V	0.5	0.6	0.7	1/V
Error amplifier section						
V _{INV}	Voltage Feedback Input Threshold	10.5V < V _{CC} < 22V	2.475	2.5	2.525	V
	Line Regulation	V _{CC} = 10.5 to 22V		2	5	mV
I _{INV}	Input Bias Current	V _{INV} = 0 to 3 V			-1	µA
G _V	Voltage Gain	Open loop	60	80		dB
GB	Gain-Bandwidth Product			1		MHz
I _{COMP}	Source Current	V _{COMP} = 4V, V _{INV} = 2.4 V	-2	-3.5	-5	mA
	Sink Current	V _{COMP} = 4V, V _{INV} = 2.6 V	2.5	4.5		mA
V _{COMP}	Upper Clamp Voltage	I _{SOURCE} = 0.5 mA	5.3	5.7	6	V
	Lower Clamp Voltage	I _{SINK} = 0.5 mA ⁽¹⁾	2.1	2.25	2.4	V
Current sense comparator section						
I _{CS}	Input Bias Current	V _{CS} = 0			-1	µA
td(H-L)	Delay to Output			200	350	ns
V _{CS clamp}	Current sense reference clamp	V _{COMP} = Upper clamp	1.6	1.7	1.8	V
V _{CS offset}	Current sense offset	V _{MULT} = 0		30		mV
		V _{MULT} = 2.5V		5		

Zero current detector section

V_{ZCDH}	Upper Clamp Voltage	$I_{ZCD} = 2.5 \text{ mA}$	5.0	5.7	6.5	V
V_{ZCDL}	Lower Clamp Voltage	$I_{ZCD} = -2.5 \text{ mA}$	0.3	0.65	1	V
V_{ZCDA}	Arming Voltage (positive-going edge)	(3)		2.1		V
V_{ZCDT}	Triggering Voltage (negative-going edge)	(3)		1.6		V
I_{ZCDb}	Input Bias Current	$V_{ZCD} = 1 \text{ to } 4.5 \text{ V}$		2		μA
I_{ZCDsrc}	Source Current Capability		-2.5		-5.5	mA
I_{ZCDsnk}	Sink Current Capability		2.5			mA
V_{ZCDdis}	Disable threshold		150	200	250	mV
V_{ZCDen}	Restart threshold				350	mV
I_{ZCDres}	Restart Current after Disable		30	75		μA

Starter

t_{START}	Start Timer period		75	130	300	μs
-------------	--------------------	--	----	-----	-----	---------------

Output overvoltage section

I_{OVPH}	Dynamic OVP triggering current		36	40	44	μA
I_{OVPL}	Dynamic OVP release current		4	7	10	μA
Hys	Hysteresis	$Hys = I_{OVPH} - I_{OVPL}$ (3)		30		μA

Gate driver

V_{OH}	Dropout Voltage	$I_{GDsource} = 20 \text{ mA}$		2	2.6	
		$I_{GDsource} = 200 \text{ mA}$		2.5	3	V
V_{OL}		$I_{GDSink} = 200 \text{ mA}$		0.9	1.9	V
t_f	Voltage Fall Time			30	70	ns
t_r	Voltage Rise Time			40	80	ns
V_{Oclamp}	Output clamp voltage	$I_{GDsource} = 5 \text{ mA}; V_{cc} = 20 \text{ V}$	15	15.5	16	V

(1)All parameters are in tracking

(2)The multiplier output is given by: $V_{CS} = K * V_{MUL} * (V_{COMP} - 2.5)$

(3)Parameters guaranteed by design, functionality tested in production.

Operation Description

• Overvoltage protection

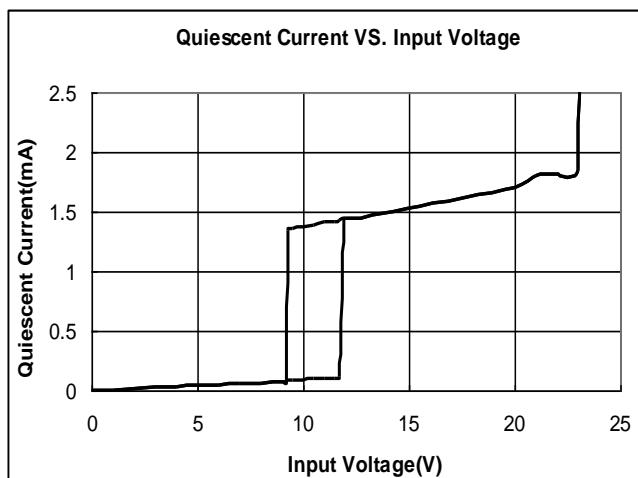
Under steady-state conditions, the voltage control loop keeps the output voltage V_o of a PFC pre-regulator close to its nominal value, set by the resistors R_1 and R_2 of the output divider. Neglecting ripple components, the current through R_1 , I_{R1} , equals that through R_2 , I_{R2} . Considering that the non-inverting input of the error amplifier is internally referenced at 2.5V, also the voltage at pin INV will be 2.5V, then:

$$I_{R2} = \frac{2.5}{R2} = I_{R1} = \frac{V_o - 2.5}{R1}$$

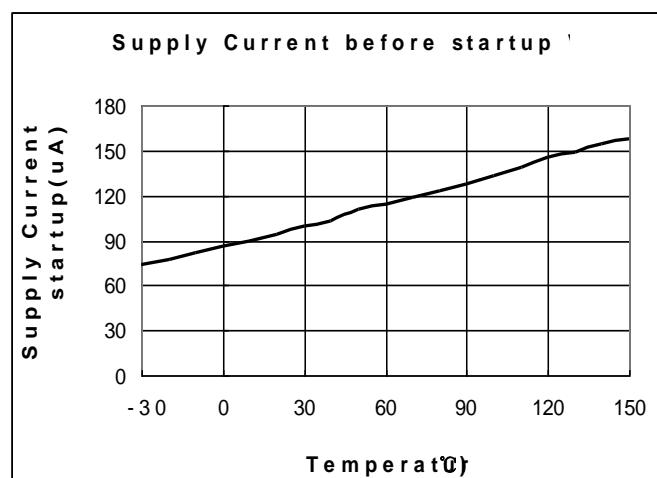
If the output voltage experiences an abrupt change $\Delta V_o > 0$ due to a load drop, the voltage at pin INV will be kept at 2.5V by the local feedback of the error amplifier, a network connected between pins INV and COMP that introduces a long time constant to achieve high PF (this is why ΔV_o can be large). As a result, the current through R2 will remain equal to $2.5/R2$ but that through R1 will become:

$$I_{R1} = \frac{V_o - 2.5 + \Delta V_o}{R1}$$

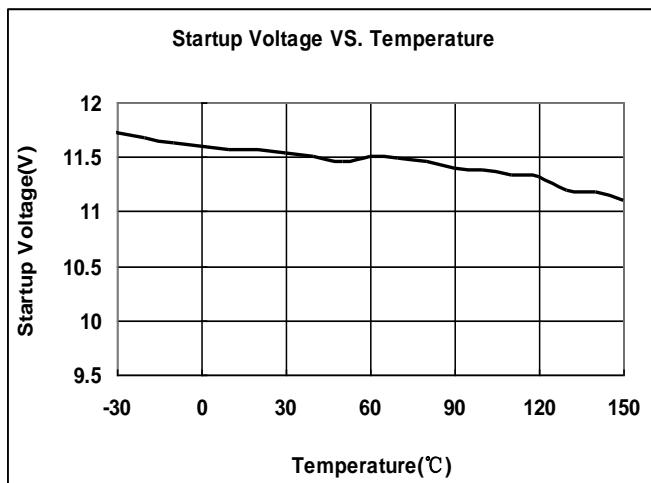
The difference current $\Delta I_{R1} = I_{R1} - I_{R2} = I_{R1} - IR_1 = \Delta V_o / R1$ will flow through the compensation network and enter the error amplifier output (pin COMP). This current is monitored inside the ME8401 and if it reaches about $37 \mu A$ the output voltage of the multiplier is forced to decrease, thus smoothly reducing the energy delivered to the output. As the current exceeds $40 \mu A$, the OVP is triggered (Dynamic OVP): the gate-drive is forced low to switch off the external power transistor and the IC put in an idle state. This condition is maintained until the current falls below approximately $10 \mu A$, which re-enables the internal starter and allows switching to restart. The output ΔV_o that is able to trigger the Dynamic OVP function is then:

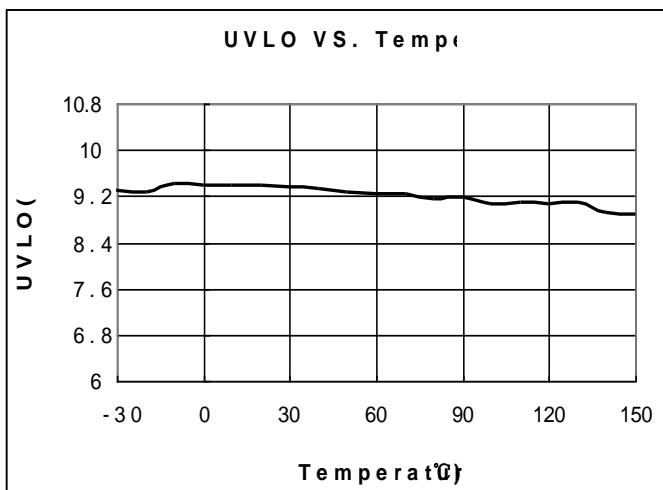

$$\Delta V_o = R1 \cdot 40 \cdot 10^{-6}$$

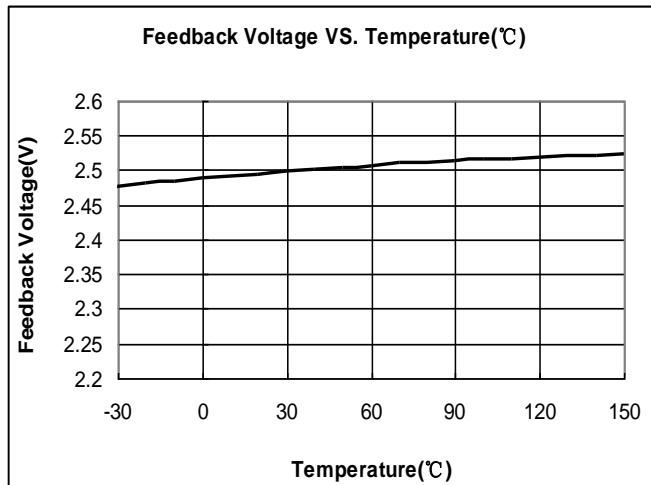
An important advantage of this technique is that the OVP level can be set independently of the regulated output voltage: the latter depends on the ratio of R1 to R2, the former on the individual value of R1. Another advantage is the precision: the tolerance of the detection current is 12%, that is 12% tolerance on ΔV_o . Since $\Delta V_o \ll V_o$, the tolerance on the absolute value will be proportionally reduced. Example: $V_o = 400V$, $\Delta V_o = 40V$. Then: $R1 = 40V/40\mu A = 1M\Omega$; $R2 = 1M\Omega \cdot 2.5 / (400-2.5) = 6.289K\Omega$. The tolerance on the OVP level due to the ME8401 will be $40 \cdot 0.12 = 4.8V$, that is 1.2% of the regulated value.

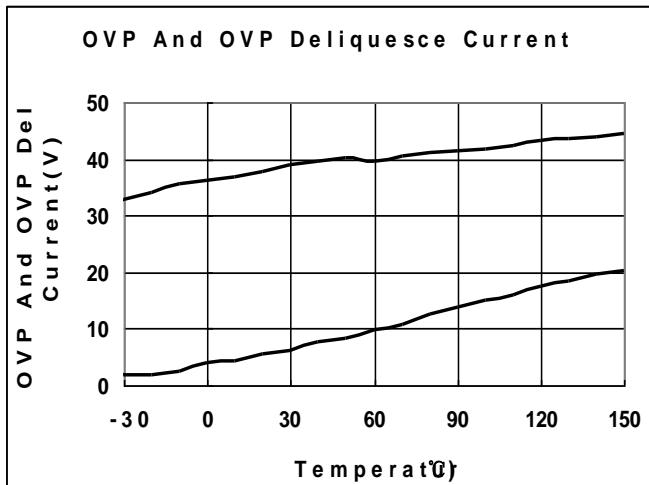

When the load of a PFC pre-regulator is very low, the output voltage tends to stay steadily above the nominal value, which cannot be handled by the Dynamic OVP. If this occurs, however, the error amplifier output will saturate low; hence, when this is detected, the external power transistor is switched off and the IC put in an idle state (Static OVP). Normal operation is resumed as the error amplifier goes back into its linear region. As a result, the ME8401 will work in burst-mode, with a repetition rate that can be very low. When either OVP is activated the quiescent consumption of the IC is reduced to minimize the discharge of the Vcc capacitor and increase the hold-up capability of the IC supply system.

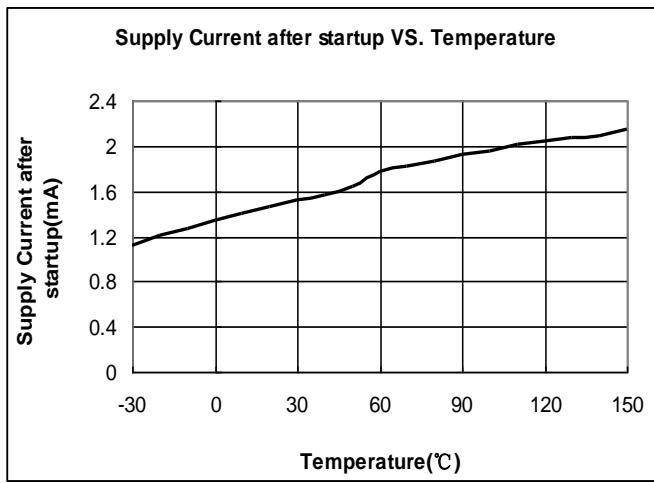
Typical performance characteristics

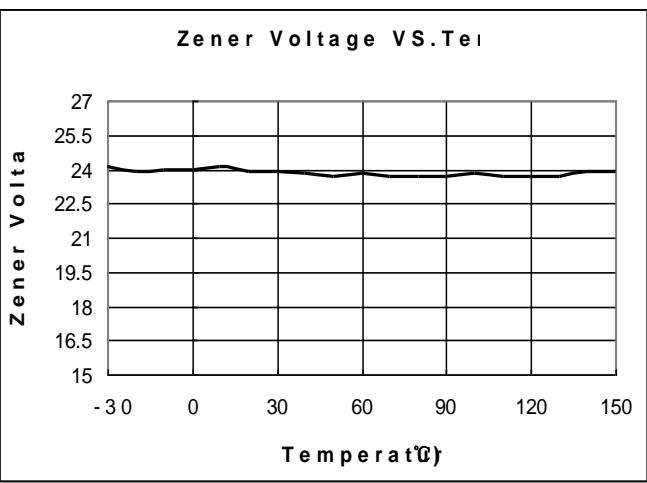

(1) IC Supply Current vs. Input Voltage

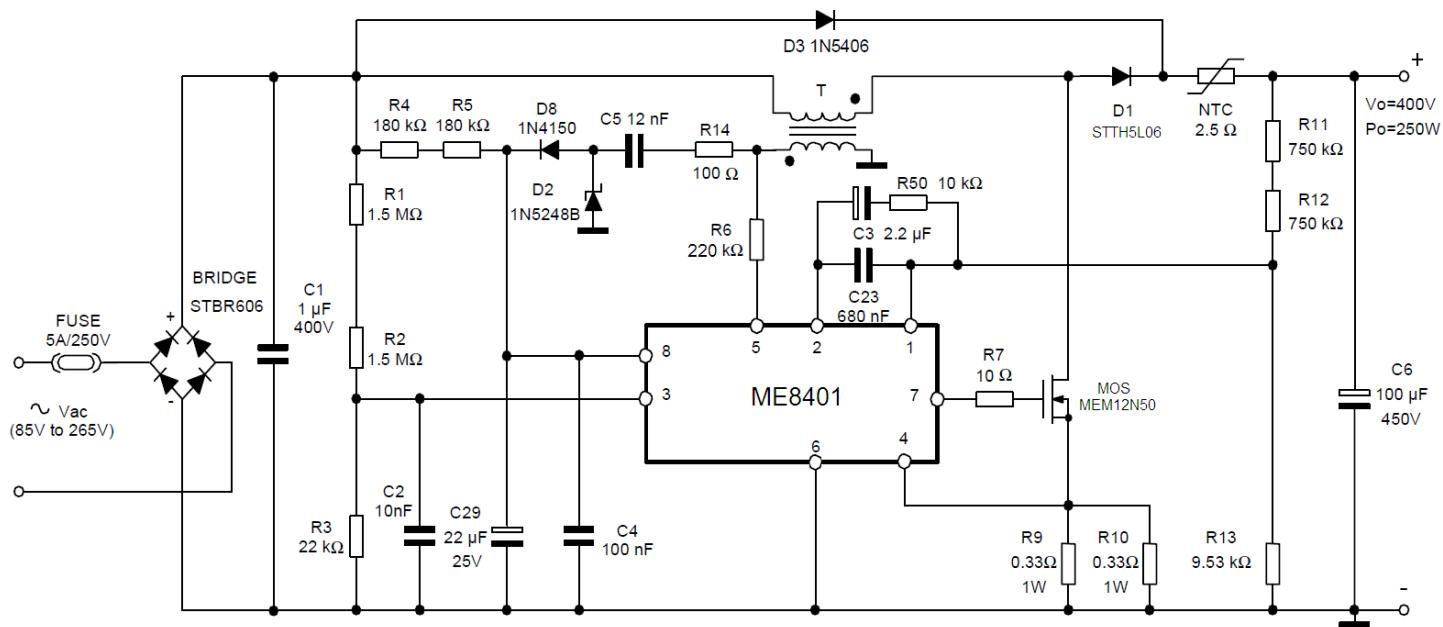
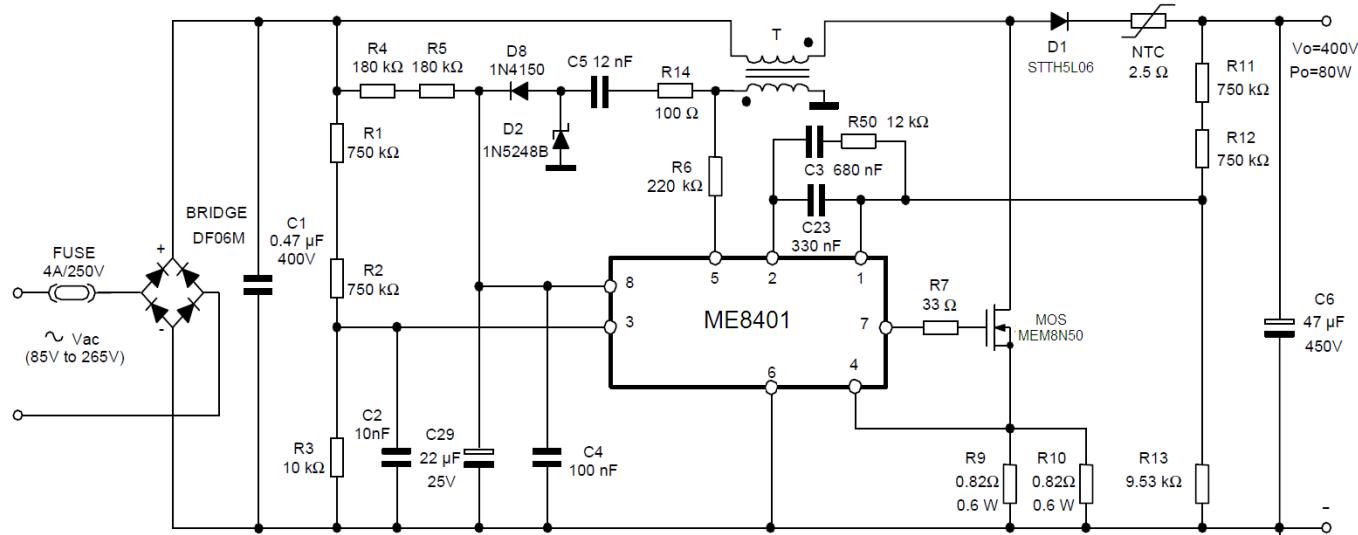

(2) Startup Current vs. Temperature


(3) VDD under voltage lock out exit voltage vs. Temperature


(4) VDD under voltage lock out enter voltage vs. Temperature

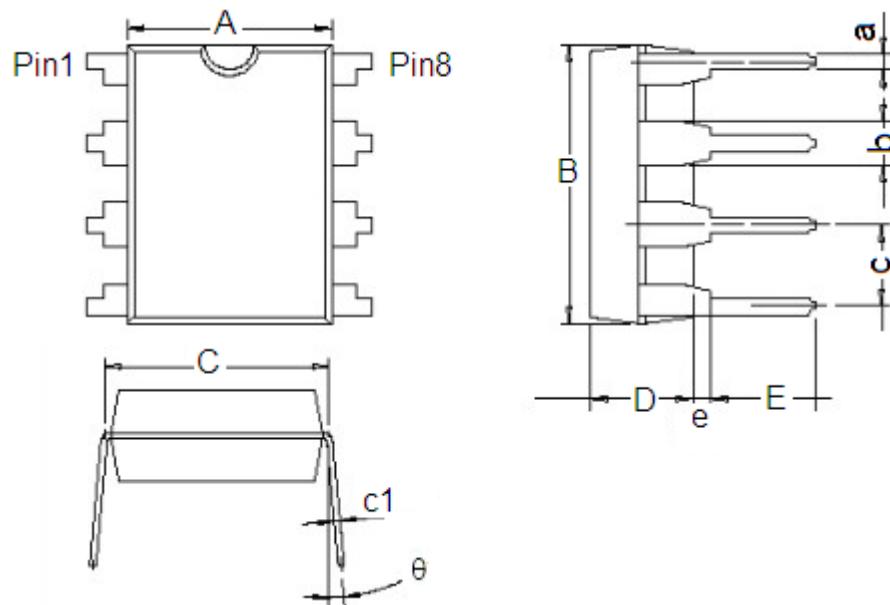

(5) Reference voltage for feedback vs. Temperature


(6) OVP And OVP Deliquesce Current vs. Temperature

(7) Quiescent Current vs. Temperature

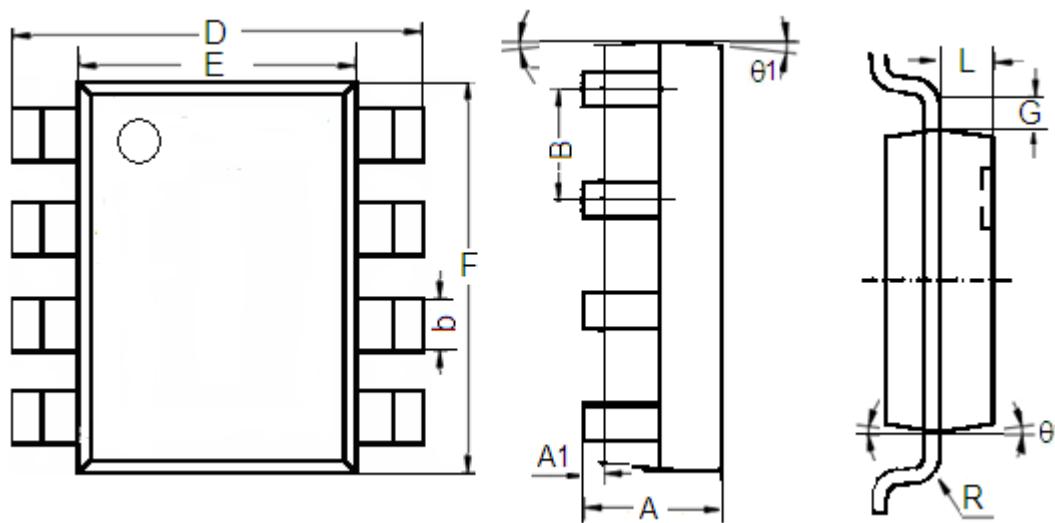
(8) Zener Voltage vs. Temperature


Typical Application
(1) Typical application circuit (250W, Wide-range mains)

(2) Typical application circuit (80W, Wide-range mains)

Boost Inductor Spec (ITACOIL E2543/E)

- E25x13x7 core, 3C85 ferrite
- 1.5 mm gap for 0.7 mH primary inductance
- Primary: 105 turns 20x0.1 mm
- Secondary: 11 turns 0.1 mm


Package Information

Package type:DIP8 Unit:mm(inch)

Character	Dimension (mm)		Dimension (Inches)	
	Min	Max	Min	Max
A	6.200	6.600	0.244	0.260
B	9.000	9.400	0.354	0.370
C	7.620(Typ.)		0.300(Typ.)	
D	3.200	3.600	0.126	0.142
E	3.000	3.600	0.118	0.142
a	0.360	0.560	0.014	0.022
b	1.524(Typ.)		0.060(Typ.)	
c	2.54(Typ.)		0.100(Typ.)	
c1	0.204	0.360	0.008	0.014
e	0.510(Min)		0.020(Min)	
θ	0 ⁰	15 ⁰	0 ⁰	150

Package type:SOP8 Unit:mm(inch)

Character	Dimension (mm)		Dimension (Inches)	
	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.1	0.3	0.004	0.012
B	1.27(Typ.)		0.05(Typ.)	
b	0.330	0.510	0.013	0.020
D	5.8	6.2	0.228	0.244
E	3.800	4.000	0.150	0.157
F	4.7	5.1	0.185	0.201
L	0.675	0.725	0.027	0.029
G	0.32(Typ.)		0.013(Typ.)	
R	0.15(Typ.)		0.006(Typ.)	
θ1	7°		7°	
θ	8°		8°	

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.